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Abstract
It is argued that continuum realizations of distributions of collisionless charged
particles should accommodate a dynamically evolving number of electric
currents even if the continuum is composed of only one species of particle,
such as electrons. A model is proposed that self-consistently describes the
interaction of such a continuum and its electromagnetic field. It is formulated
using a Lagrangian approach and employs a ‘folded’ flow map to describe
the bulk particle motion. An asymptotic perturbation scheme is developed to
analyse ultra-relativistic multi-component current configurations. The model
is fully relativistic and is formulated over Minkowski spacetime using intrinsic
tensor field theory.

PACS numbers: 41.75.Ht, 29.27.−a, 52.27.Jt

1. Introduction

Progress in high-energy physics relies on accelerator designers contemplating charged particle
beams of ever higher energies and intensities. As schemes for accelerating charged particles
become more complex and ambitious in their aims, it is apparent that some existing theoretical
models are inadequate for a proper understanding of new challenges. In many existing models,
matter is represented using classical point particles and it is not clear how to unambiguously
and consistently model their electromagnetic interaction.

The nub of the problem is precisely how one should sensibly formulate the interaction
of a classical point charge with its own electromagnetic field. The charge density of a point
particle is singular and must therefore be handled carefully. Assumptions must be made about
how the singular Coulombic stresses are compensated by non-electromagnetic stresses when
calculating the particle’s self-force. This issue was addressed by Dirac [1] nearly 70 years
ago and led to the covariant Lorentz–Dirac equation for the trajectory of a point charge in an
external electromagnetic field. However, unlike more familiar equations of particle mechanics,
the Lorentz–Dirac equation is a third-order ordinary differential equation in proper time for the
particle’s trajectory and has a number of unusual properties including self-acceleration and pre-
acceleration. Unless special final conditions are adopted, it predicts that an isolated and free
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point charge with non-zero initial velocity will accelerate forever and if the particle is subjected
to a sharp electromagnetic pulse it will begin to move before the pulse reaches it. Methods for
evading such unpalatable conclusions involve iterating the Lorentz–Dirac equation in powers
of its charge q0. Landau and Lifshitz [2] showed that truncating the resulting series to any
finite order leads to a second-order evolution equation yielding particle trajectories with more
reasonable properties. Although their argument yields a workable scheme, it is not at all
clear that it may be generalized to a collection of accelerating high-energy charged particles
in close proximity. Neglecting higher-order terms in q0 may be suspect when the particle
number density is sufficiently high. In conclusion, a number of ad-hoc choices must be made
to obtain a sensible relativistic equation of motion for a collection of charged point particles
starting from first principles. For a recent account of the issues concerning the derivation of
the Lorentz–Dirac equation, see [3].

Many of the above issues are due to the uneasy marriage of field and point particle concepts
in classical electrodynamics. Classical point particles are a convenient idealization and one
might argue that quantum theory must be invoked to yield a palatable answer. However, the
testy relationship between fields and point particles resurfaces in quantum electrodynamics
where divergences in ‘bare’ quantities must be regulated prior to renormalization to obtain
physical results.

Given the above complexities and reservations, an alternative approach has recently been
developed [3] to analyse the ultra-relativistic dynamics of a collection of accelerating charged
particles. The attitude adopted in [3] and the present article is that models of matter based on
classical relativistic field theory are more suitable for high-energy beam dynamics than those
employing classical point particle notions. The model in [3] employs a smooth relativistic field
description of the electromagnetic and matter content where the total energy and momentum of
the electromagnetic and matter fields are conserved. Charged matter is modelled as a 4-vector
field on spacetime whose trajectories describe the bulk particle motion.

The partial differential equations governing the electromagnetic and matter fields in this
paper are fully coupled and nonlinear. Although exact solutions describing highly symmetric
configurations can be found, the system of equations is in general only tractable when subjected
to an approximation scheme. Such a scheme, based on a covariant asymptotic expansion in a
running parameter ε > 0 around the light-cone, was introduced in [3] and permits calculation
of the detailed dynamics of ultra-relativistic charged particle beams in external electromagnetic
fields. In principle, one can calculate the field quantities to any desired finite order in ε.

The present paper focuses on some of the issues encountered when analysing the model
in [3]. Specifically, the nonlinearities in the field equations may lead to solutions whose
charge density diverges despite being initially regular. Sections 2 and 3 briefly review the
charged continuum model in [3] and show that diverging solutions exist satisfying a substantial
range of initial conditions. This behaviour is commonplace in many continuum models in
physics, such as in neutral gas dynamics and fluid dynamics, and is often ameliorated by
including dissipative processes. Section 4 argues that dissipative processes will not prevent
the formation of multiple currents in charged beams. Sections 5 and 6 develop and analyse
a continuum model accommodating currents with a dynamical number of components and
section 7 extends the ultra-relativistic analysis methods introduced in [3] to multi-component
charged currents.

2. Single current charged continua

The model discussed in this section and in [3] describes a collection of accelerating charged
particles, with (rest) mass m0 and charge q0, as a dynamical continuum. The vector field V is
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the 4-velocity of the continuum on spacetime and its integral curves describe the bulk motion of
the collection of charged particles. The scalar field N is the particle number density measured

by a comoving observer and ρ = q2
0

ε0m0c2 N is called the reduced proper charge density where
ε0 is the permittivity of the vacuum and c is the speed of light in the vacuum. In what follows,
units are chosen in which c = 1.

The antisymmetric rank 2 covariant tensor field F (a 2-form) encodes the electromagnetic
field and the triple (V , ρ, F ) satisfies the covariant Maxwell equations [4]

dF = 0, (1)

d � F = −ρ � Ṽ , (2)

on Minkowski spacetime (M4, g) where g is the metric tensor. In an inertial Cartesian
coordinate system (t, x, y, z) in the laboratory frame

g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz,

d is the exterior derivative, � is the Hodge map associated with g and the 1-form Ṽ is defined
by the property Ṽ (X) = g(V,X) for any vector field X. The field equations for V are obtained
using energy–momentum conservation dτK = 0 where the total stress–energy–momentum
3-form τK ,

τK = ρg(V,K) � Ṽ + 1
2 (iKF ∧ �F − F ∧ iK � F ),

is the sum of matter and electromagnetic contributions and the vector field K is a spacetime
translation on M4. Setting K to ∂t , ∂x, ∂y and ∂z in dτK = 0 yields the ∂t , ∂x, ∂y and ∂z

components of the equation

∇V Ṽ = iV F , (3)

where

g(V, V ) = −1 (4)

with ∇ the Levi-Civita connection on M4 and iV the interior (contraction) operator on forms.
The term iV F in (3) is a continuum generalization of the covariant expression for the Lorentz
force on a point charge (the charge to mass ratio q0/m0 has been absorbed into the definitions
of ρ and F) where the tangent to the point charge’s proper-time parametrized worldline has
been replaced by V . The charged matter drives the electromagnetic field through (2) and
the electromagnetic field acts back on the matter through (3) conserving total energy and
momentum.

Equations (1)–(4) are well known in charged plasma physics and are often said to describe
a ‘cold charged fluid’. They have found application to accelerator physics [5] in recent years
and have proved useful for examining the stability of high intensity particle beams.

3. Development of singularities in the charge density

In [3] highly symmetric exact solutions to (1)–(4) describing ‘walls of charge’ were used to
motivate a hierarchy of field equations for modelling ultra-relativistic charged particle beams.
Exact solutions to (1)–(4) of the form

F = E(t, z) dt ∧ dz,

V = 1√
1 − µ2(t, z)

(∂t + µ(t, z)∂z)
(5)
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were sought, where µ∂z is the Newtonian velocity of the charge distribution as measured by
the laboratory observer ∂t . Using (1)–(5) it follows that

dE = ρ#Ṽ , (6)

∇V Ṽ = E#Ṽ , (7)

g(V, V ) = −1 (8)

where the projected metric g is

g = −dt ⊗ dt + dz ⊗ dz,

# is the Hodge map associated with the volume 2-form #1 ≡ dt ∧ dz,∇ is the Levi-Civita
connection of g and Ṽ (X) = g(V,X) for any vector X on two-dimensional Minkowski
spacetime M2 with metric g. Equation (6) implies

V E = 0 (9)

i.e. the electric field is constant along the integral curves of V and so, using (7), the magnitude
of the acceleration ∇V V is constant along the integral curves of V . Therefore, the continuum
undergoes local hyperbolic motion and it is straightforward to solve to (6)–(8) in a comoving
coordinate system (τ, σ ) adapted to V , as shown in [3], where V = ∂τ and z = σ on the initial
hypersurface τ = 0. For charge distributions initially at rest the Jacobian of the transformation
between (τ, σ ) and (t, z) is non-degenerate for all τ and σ [3]. Using (6) it follows that, for
all τ > 0, ρ is well-behaved for charge distributions at rest at τ = 0.

The purpose of this section is to demonstrate that more general initial conditions lead to
divergences in the reduced proper charge density ρ over finite time. In [3] particular examples
of ρ were generated using expressions for V and E as functions of τ = τ̂ (t, z) and σ = σ̂ (t, z).
For the present purposes it is more convenient to formulate an ordinary differential equation
for ρ along V and examine properties of its solutions. The integrability condition

d(ρ#Ṽ ) = 0

following from (6) is written

Vρ = −ρθ (10)

where the scalar θ ≡ #−1 d#Ṽ is the divergence of V . Equations (10), (9) and V θ = f (ρ, θ, E)

for some f is a closed first-order ordinary differential system for (ρ, θ, E) along the integral
curves of V . An explicit expression for f is obtained below.

Using the identity (see, for example, p 229 of [4])

(LV g)(X, Y ) = g(X,∇Y V ) + g(Y,∇XV ) (11)

where X and Y are any vector fields on M2 and LV is the Lie derivative with respect to V , it
follows that

(LV Ṽ )(X) = (LV g)(V,X)

= g(V,∇XV ) + g(X,∇V V ) (12)

and, using (8),

g(V,∇XV ) = 1
2∇X(g(V, V ))

= 0, (13)

since ∇ is metric-compatible. Therefore, (12) yields

LV Ṽ = ∇V Ṽ . (14)
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Using Cartan’s identity [4] LV = iV d + diV on forms it follows

LV Ṽ = iV dṼ (15)

and so the following expressions for the 4-acceleration A ≡ ∇V V of V are obtained:

Ã = ∇V Ṽ = iV dṼ = E#Ṽ (16)

where (7), (14) and (15) have been used and Ã(X) = g(A, X) for any vector X on M2. Since
there are no 3-forms on two-dimensional manifolds Ṽ ∧ dṼ = 0 and

iV (Ṽ ∧ dṼ ) = 0

= (iV Ṽ ) dṼ − Ṽ ∧ iV dṼ . (17)

Using (17), (16) and iV Ṽ = g(V, V ) = −1, it follows that

dṼ = E#1. (18)

Any frame field (X0, X1) and its dual coframe field (e0, e1) on M2 satisfy

ea(Xb) = δa
b ,

δa
b ≡

{
1 if a = b

0 if a �= b

(19)

where the indices a, b run over 0, 1. The intrinsic curvature of ∇ is zero so

∇V ∇Xa
V − ∇Xa

∇V V − ∇ [V,Xa ]V = 0 (20)

where [V,Xa] is the Lie bracket of V and Xa . The divergence θ = #−1 d#Ṽ of V may be
written as3

θ = ∇ · V = ea
(∇Xa

V
)
.

Hence

V θ = ∇V (∇ · V )

= (∇V ea)
(∇Xa

V
)

+ ea
(∇V ∇Xa

V
)

= (∇V ea)
(∇Xa

V
)

+ ∇ · A + ea
(∇[V,Xa ]V

)
(21)

where (20) and (16) have been used. The torsion of ∇ vanishes

∇V Xa − ∇Xa
V − [V,Xa] = 0

and so, using (19)

∇V ea = −(
ea(∇V Xb)

)
eb

= −(
ea

(∇Xb
V

)
+ ea([V,Xb])

)
eb. (22)

Using (22) to eliminate ∇V ea in (21) yields

V θ = ∇ · A − tr(∇V ∇V ) (23)

where ∇V = eb
(∇Xa

V
)
ea ⊗ Xb and tr(∇V ∇V ) = eb

(∇Xa
V

)
ea

(∇Xb
V

)
. The scalar

tr(∇V ∇V ) is obtained using the following g-orthonormal frame field {X0, X1} adapted to
V and its co-frame field {e0, e1}:

X0 = V, X1 = #̃Ṽ ,

e0 = −Ṽ , e1 = #Ṽ
(24)

3 The Einstein summation convention is followed, i.e., repeated indices are implicitly summed.
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where the vector field X1 = #̃Ṽ is defined by g(X,X1) = (#Ṽ )(X) on any vector X on M2.
Using (13), (11) and (24) it follows that

tr(∇V ∇V ) = (
g
(
X1,∇X1V

))2

= 1
4 ((LV g)(X1, X1))

2 (25)

and expressing g as

g = −e0 ⊗ e0 + e1 ⊗ e1 = −Ṽ ⊗ Ṽ + #Ṽ ⊗ #Ṽ

it follows

LV g = −LV Ṽ ⊗ Ṽ + Ṽ ⊗ LV Ṽ + LV #Ṽ ⊗ #Ṽ + #Ṽ ⊗ LV #Ṽ

and

(LV g)(X1, X1) = 2(LV #Ṽ )(X1)

= 2θ (26)

where (19), (24), θ = #−1 d#Ṽ and Cartan’s identity on forms have been used. Equations (23),
(26) and (25) give

V θ = ∇ · A − θ2 (27)

and writing ∇ · A as a differential form yields

∇ · A = #−1 d#Ã
= #−1 d#iV dṼ

= −#−1 d(Ṽ ∧ #dṼ )

= −#−1(dṼ ∧ #dṼ ) + #−1(Ṽ ∧ d#dṼ ). (28)

Thus, using (6), (18) and (28) it follows that (27) is

V θ = E2 + ρ − θ2. (29)

Equations (29), (10) and (9) are a closed system of differential equations for (ρ, θ, E)

along V .
Let 
 be any proper-time parametrized integral curve of V :


 : I → M2,

λ → (t = T (λ), z = Z(λ))

where I is a subset of the real line R and


∗∂λ = V.

Hence, equations (9), (10) and (29) pulled back to R using 
∗ are

dE


dλ
= 0, (30)

dρ


dλ
= −ρ
θ
, (31)

dθ


dλ
= E2


 + ρ
 − θ2

 (32)

where the subscript 
 indicates pull-back using 
∗, e.g., E
(λ) = (
∗E)(λ) = E(T (λ), Z(λ)).
The general solution to (31) is

ρ
(λ) = ρ0 exp

(
−

∫ λ

0
θ
(λ′) dλ′

)
(33)
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where ρ0 = ρ
(0) is a value of ρ on an initial hypersurface. Since ρ = q2
0

ε0m0c2 N and the
proper number density N � 0 it follows ρ
 � 0. Over intervals of λ on which dρ
/dλ �= 0
(30)–(32) yields

dE


dρ


= 0,

dθ


dρ


= 1

−ρ
θ


(
E2


 + ρ
 − θ2



)
and so

ρ2



d

dρ


(
ρ−2


 θ2



) = −2E2



ρ


− 2

leading to the first integral

θ2

 = E2

0 + 2ρ
 + κ0ρ
2

 (34)

of (30)–(32) where κ0 is a constant of integration determined by the initial values θ
(0) =
θ0, ρ
(0) = ρ0 and E
(0) = E0.

According to (34), θ2

 is a quadratic function in ρ
 with E0 and κ0 held fixed and the large

λ behaviour of ρ
 and θ
 crucially depend on the sign of κ0. Since E2
0 is a positive constant

and θ2

 is positive (θ
 is real), it follows that if κ0 < 0 then ρ
 in (34) cannot be arbitrarily

large:

If κ0 < 0 then ρ
 is bounded from above. (35)

However, if κ0 � 0 then no such bound on ρ
 exists and, in principle, ρ
 and θ
 can attain
arbitrarily large values. In fact, as will now be shown, if κ0 > 0 then ρ
 may diverge in finite
proper time.

Assume that the initial data satisfies κ0 > 0 and θ0 < 0. Using (34) to eliminate θ2

 from

the right-hand side of (32) leads to

dθ


dλ
= −ρ
 − κ0ρ

2

 (36)

and since ρ
 � 0, κ0 > 0 and θ0 < 0 it follows from (36) that θ
 < 0. Therefore, using the
negative root of (34),

θ
 = −
√
E2

0 + 2ρ
 + κ0ρ
2

,

to eliminate θ
 from the right-hand side of (31)

dρ


dλ
= ρ


√
E2

0 + 2ρ
 + κ0ρ
2



is obtained and ρ
 asymptotes at proper time λ∞ where

λ∞ =
∫ ∞

ρ0

1

ρ


√
E2

0 + 2ρ
 + κ0ρ
2



dρ
. (37)

The integrand is positive and
(
E2

0 + 2ρ


)
> 0 so (37) implies

λ∞ <

∫ ∞

ρ0

1

ρ


√
κ0ρ

2



dρ
 = 1

ρ0
√

κ0

i.e. λ∞ is bounded from above.

If κ0 > 0 and θ0 < 0 at λ = 0 then ρ
 diverges

at proper time λ = λ∞ less than 1/(ρ0
√

κ0). (38)
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The constant κ0 may be obtained in terms of data on the spacelike hypersurface t = 0 = T (0)

where (t, z) is the laboratory coordinate system. Let µ(0, z) be the initial Newtonian velocity
measured in the laboratory frame (see (5) for the definition of µ). Using (5), θ = ∇ · V and
(7) it follows that

θ = ∂tγ + ∂z(γµ), (39)

∂tγ + µ∂zγ = Eµ (40)

where γ = 1/
√

1 − µ2. Using (40) to eliminate ∂tγ from (39) yields

θ = Eµ + γ ∂zµ

and so on the initial spacelike hypersurface t = 0

θ0 = E0µ0 + γ0(∂zµ)0 (41)

where µ0 = (
∗µ)(0), (∂zµ)0 = (
∗(∂zµ))(0). Using (41) to eliminate θ0 = θ
(0) in (34)
evaluated at λ = 0 gives

κ0 = 1

ρ2
0

(
γ 2

0 (∂zµ)2
0 + 2E0µ0γ0(∂zµ)0 − E2

0

γ 2
0

− 2ρ0

)
. (42)

Equation (42) indicates that if (∂zµ)0 = 0 then κ0 < 0 and according to (35) ρ
 does not
diverge. This result agrees with the non-singular behaviour of the exact solutions to (6)–(8)
satisfying µ(0, z) = 0 presented in [3]; for κ0 to be positive (∂zµ)0 must be non-zero.

The integral curves of V for the particular solution to equations (6)–(8) with the initial
conditions

E(0, z) = 1

2

( ∫ z

−∞

ρ(0, s)√
1 − µ(0, s)2

ds −
∫ ∞

z

ρ(0, s)√
1 − µ(0, s)2

ds

)
,

ρ(0, z) = 0.01 exp(−z2),

µ(0, z) = 0.1 sin(z)

are shown in figure 1. Trajectories on which κ0 > 0 and θ0 < 0 are solid and trajectories
on which κ0 < 0 are dashed. Thus, according to (38), ρ diverges at points along the solid
trajectories. The details of the onset of the crossings are shown in figure 2 with proper time λ

and z as axes. Evaluating (37) gives λ∞ = 10.14 (corresponding to t ≈ 11) for the trajectory
starting at (t, z) = (0, 3). Any comoving coordinate system (τ, σ ) adapted to the trajectories,
where σ is constant on each trajectory, degenerates where the solid trajectories cross. The
determinant of the Jacobian of the (τ, σ ) → (t, z) transformation vanishes at such points and
ρ diverges.

4. Discussion of crossing trajectories in charged particle beams

In fluid and gas dynamics, crossing trajectories are considered to be a symptom of incomplete
physics. All real fluids and gases are viscous to some extent and trajectories may cross if their
viscosity is neglected. For example, a compression wave in a hypothetical inviscid fluid may
lead to a velocity field with crossing characteristics, i.e. the velocity becomes multi-valued.
In reality this is not what happens; the velocity remains single-valued and stabilizes to form a
propagating shock. The fluid on either side of the shock is essentially inviscid but close to the
shock the second-order spatial derivatives of the velocity are so large that dissipation can no
longer be neglected.
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Figure 1. The integral curves of V for a particular solution to equations (6)–(8).
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Figure 2. The integral curves of V for a particular solution to equations (6)–(8).

However, it is far from clear that such arguments are relevant for a charged particle
beam, which is physically very different from a normal fluid. Although (1)–(4) are often
said to describe a ‘cold charged fluid’ [5], this terminology is misleading. Microscopically, a
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normal fluid is a complicated system of neutral particles whose interactions are dominated by
molecular collisions and possibly gravity but the dominant inter-particle forces in a beam of
electrons are entirely electromagnetic in origin. At first sight, it seems that all of the necessary
physics is contained in (1)–(4).

The velocity field V is a smoothed out representation of the particle motion. The fact
that the trajectories cross does not mean that the particles are colliding; it merely indicates
that a smooth field representation of the particles has degenerated. Similarly, the 3-volume
number density of a collection of particles may attain arbitrarily large values if the particles
dynamically arrange themselves into planar or linear configurations.

Nevertheless, the electric field induced by V in (1)–(4) is inconsistent where trajectories
of V cross. Equation (9) indicates that the electric field in any wall-of-charge solution is
constant along V . However, during the crossing the charge distribution ‘passes through itself’
and the electric field has to change. The reason for this is easiest to appreciate by the following
simple analogy. Consider the dynamics of a pair of positive sheet charges that are permitted
to pass through each other. The sheets are arranged so that their normals and their electric
fields lie along the z-axis. Each sheet has the same properties; its self-induced electric field is
E at all points to its right and −E at all points its left, where E > 0 is constant, and its charge
per unit area is Q = 2ε0E. The sheets are labelled 1 and 2 and sheet 1 lies to the left of sheet
2 initially. The electrostatic force acting on each sheet is constant and is due to the electric
field of the other sheet. The force per unit area acting on sheet 1 is −QE and on sheet 2 is
QE. Thus, the sheets will repel each other but their electric forces will not be enough to stop
them meeting for sufficiently large opposing initial velocities. Let the initial velocities be so
large that the sheets pass through each other. At all times before they meet, the force on sheet
1 is −QE and the force on sheet 2 is QE. After they meet their roles have been exchanged;
sheet 2 is acted on by −QE while sheet 1 is acted on by QE. Now consider a large number
of sheets undergoing collective motions in which only some of the sheets pass through each
other. A continuum realization of this model is a dynamical set of component continua each
with its own velocity field. The number of components evolves in time and depends on the
history of the total continuum.

The spacetime fields (V , ρ) satisfying (1)–(4) offer an Eulerian description of a single
component continuum. Although a dynamical number of components can be simulated using
more complicated Eulerian field theories [6], such approaches are restrictive because an upper
bound must be placed on the number of anticipated components. In the following section a new
Lagrangian model of a multi-component charged continuum is proposed in which the number
of components is dynamical and free to attain any value. The essential idea is to describe the
bulk particle motion using a flow map C from a body-time manifold into spacetime rather than
inducing the motion from a velocity field V on spacetime. C may be described as ‘folding’
a single electric current on the body-time manifold to give a multi-component current on
spacetime.

5. Lagrangian description of multi-component charged continua

Ingredients in the following Lagrangian description are an auxiliary four-dimensional manifold
B4 called the body-time manifold and a map C from B4 into Minkowski spacetime M4. The
body-time manifold B4 = R × B3 where B3 is a three-dimensional body manifold so each
point P ∈ B4 is also written P = (λ, P ) for λ ∈ R and P ∈ B3. Each point P ∈ B3 generates
a curve CP in spacetime M4 where

CP (λ) = C(λ, P ).
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The map C is normalized so that λ is the proper-time parameter of CP for all P ∈ B3:

g(Ċ, Ċ) = −1 (43)

where Ċ(P ) = (C∗∂λ)(P ) is a vector at p = C(P ) in M4.
In general, C is a many-to-one map, i.e. there exists P1 and P2 in B4 such that C(P1) =

C(P2), and C is not required to be surjective. For any point p ∈ M4 there may exist any
number N(p) of real roots of the equation p = C(P ). The map C describes ‘multi-valued
velocities’ because although C(P1) = C(P2), there is no reason why Ċ(P1) should equal
Ċ(P2). Thus, in general Ċ cannot be identified with a vector field on M4. The domain of
Ċ is B4 and Ċ(P ) is a vector at the point C(P ); the map Ċ is referred to as a vector field
over C.

The map C is defined to satisfy the Lorentz force equation

∇Ċ
˜̇C = iĊF (44)

where F is an electromagnetic field 2-form on M4 and (∇Ċ
˜̇C)(P ) and iĊ(P )F (p) are covectors

at p = C(P ). The maps ∇Ċ
˜̇C and iĊF are covector fields over C (i.e. 1-forms over C).

The set inverse C−1 of C at p includes the set of points in B4 for which p = C(P ) and is
written

C−1({p}) =
{

{P[1], P[2], . . . , P[N(p)]} if N(p) � 1

∅ if N(p) = 0

where the square brackets distinguish root labels from coordinate and frame labels.
Each element of C−1({p}) gives rise to a partial electric 4-current J[i](p), where

i = 1, 2, . . . , N(p). The sum of partial currents is the total electric 4-current driving F
in the Maxwell equations

dF = 0, (45)

d � F = −
N(p)∑
i=0

�J̃[i]. (46)

Regions of spacetime with different numbers of partial currents are distinguished by
examining the pull-back C∗(�1) of the spacetime volume 4-form �1 by C. Critical points in
B4 are defined by the vanishing of the 4-form C∗(�1). Their images under C are also said to
be critical and lie in the interfaces between spacetime regions with different N(p). Specifying
a non-vanishing closed 3-form J on B4 satisfying

i∂λ
J = 0, L∂λ

J = 0 (47)

leads to a scalar field � on B4 where

�dλ ∧ J = C∗(�1) (48)

which vanishes at critical points. At each point p in M4 the partial 4-current J[i](p) has the
form

J[i](p) = �(P[i])Ċ(P[i]) where P[i] = C−1
[i] (p) (49)

and � is the scalar field

� = 1

|�| (50)

on B. The system (43)–(46) differs significantly from (1)–(4) because the number N(p) of
elements of C−1({p}), and therefore the number of partial 4-currents in (46), depends on the
spacetime point p. Numerically integrating (43)–(46) involves computing N(p) at each time
step.
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Figure 3. The trajectories of the particular solution to (1)–(4) with the initial conditions (51).
Trajectories cross in a narrow region inside the forward light-cone of the critical point pcrit =
(0, 1.075).

6. Multi-component charge configurations

Since (1)–(4) are equivalent to (43)–(46) when applied to a spacetime region with a single
partial current, it follows that solutions to (1)–(4) and (43)–(46) agree in such a region. This is
illustrated in figures 3 and 4 by collapsing ‘wall of charge’ solutions to (1)–(4) and (43)–(46).
The ansätze for F and V are

F = E(t, z) dt ∧ dz,

V = cosh χ(t, z)∂t + sinh χ(t, z)∂z

and ρ depends only on (t, z) where (t, x, y, z) is an inertial Cartesian coordinate system with

g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz.

Similarly, C and � only depend on (λ, σ 1) where (σ 1, σ 2, σ 3) is a coordinate system on B3.
The initial conditions on E, χ and ρ are

E(0, z) = 1

2

( ∫ z

−∞
(ρ cosh χ)(0, s) ds −

∫ ∞

z

(ρ cosh χ)(0, s) ds

)
,

ρ(0, z) =
{

0.025 if −1.5 � z � 1.5

0 otherwise,

χ(0, z) = −1.2 tanh(z)

(51)

with analogous initial conditions on C and �.
In both cases a critical point develops at pcrit = (0, 1.075). The integral curves of V in

the single-component Eulerian model (1)–(4) exhibit crossings along a narrow corridor inside
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Figure 4. The trajectories of the particular solution to (43)–(46) with the initial conditions (51).
The forward light-cone of the critical point pcrit = (0, 1.075) is also shown. The region outside the
‘fan’ emanating from pcrit has only one partial current whereas the region inside the ‘fan’ contains
three partial currents.

the forward light-cone of pcrit (see figure 3). However, the solution to (43)–(46) shown in
figure 4 contains a ‘fan’ of three partial currents inside pcrit’s forward light-cone. The two
models clearly yield dramatically different results.

On the other hand, the two models agree outside the forward light-cone at pcrit. An
argument for this is as follows: Integrate (1)–(4) and (43)–(46) using a time slicing adapted
to a field of synchronized inertial observers moving along the z-axis in the laboratory frame
with positive constant velocity arbitrarily close to the speed of light. As before, the solutions
agree up to a constant proper time surface containing the point pcrit. Part of this proper
time hypersurface almost coincides with the z > 0 subset of pcrit’s forward light cone. Now
integrate the equations using a time-slicing adapted to a field of synchronized inertial observers
moving along the z-axis in the negative direction at almost the speed of light. The result agrees
almost up to the z < 0 subset of pcrit’s forward light-cone. It follows that the solutions to
(1)–(4) and (43)–(46) agree at points outside the forward light-cone at pcrit.

For further comparison the reduced proper charge densities for (1)–(4) and (43)–(46) are
shown in figures 5 and 6.

7. Ultra-relativistic approximation scheme

Ultra-relativistic solutions to (1)–(4) may be obtained by promoting (V , ρ, F ) to a 1-parameter
family (V ε, ρε, F ε) in ε where the ε dependences are motivated by exact ‘wall of charge’
solutions [3]. The equations obtained by equating orders in ε lead to a self-consistent
hierarchical method for approximating solutions to (1)–(4). The virtue of the scheme is
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Figure 5. The reduced proper charge density ρ of the particular solution to (1)–(4) with the initial
conditions (51). ρ diverges on the boundary of a narrow region inside the forward light-cone of
the critical point pcrit = (0, 1.075).
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Figure 6. The reduced proper charge density � of the particular solution to (43)–(46) with the
initial conditions (51). The region outside the ‘fan’ has only one partial current whereas the region
inside the ‘fan’ contains three partial currents. � diverges on the boundary of the ‘fan’.

that the ε dependences conspire to produce an infinite tower of equations that are partially
coupled and are generally easier to solve than the fully coupled system (1)–(4).
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A similar approach based on (43)–(46) will now be outlined. Let Cε be a 1-parameter
family of maps from B4 into M4 such that

g(Ċε, Ċε) = −1

where Ċε = Cε
∗∂λ. Let λ = εs and introduce the map Cε where

Cε(s, P ) = Cε(εs, P ) (52)

at all non-critical points in the domain of Cε. Thus

Ċε = 1

ε
Cε

∗∂s = 1

ε
Cε′ (53)

where Cε′ = Cε
∗∂s and so

g(Cε′, Cε′) = −ε2. (54)

and the Lorentz force equation for Cε becomes

∇Cε′ C̃ε′ = εiCε′Fε. (55)

In [3] a dependence for V ε on ε of the form

V ε =
∞∑

n=−1

εnVn (56)

was motivated by ‘wall of charge’ solutions to (1)–(4). For multi-current configurations on
Minkowski spacetime M4, the flow map C is the dependent variable and it is natural to exploit
the affine structure of M4 and postulate an analogous series for Cε. Let (xa) be an inertial
Cartesian coordinate system adapted to the laboratory frame on M4 where a, b = 0, 1, 2, 3
and

g = ηab dxa ⊗ dxb

where

ηab =


−1 if a = b = 0
1 if a = b �= 0
0 if a �= b.

In the rest of this paper the map Cε is also regarded as the 4-component column vector
Cε0

Cε1

Cε2

Cε3


where (Cεa) are the (xa) components of Cε.

The ε expansions of Cεa(Q), where Q = (s, P ), are chosen as

Cεa(Q) =
∞∑

n=0

εnCa
n(Q). (57)

Motivated by the corresponding expression in the Eulerian single-current formulation [3], the
1-parameter family Fε of electromagnetic 2-forms is chosen as

Fε(p) =
∞∑

n=−1

εnFn(p) (58)
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at any point p in M4. Note that (58) is independent of the ε expansion of Cε in (57); Fε is a
1-parameter family of 2-forms on Minkowski spacetime M4 and (58) is not the ε expansion
of the 2-form Fε(Cε(Q)) on B4.

One way to minimize the complexity of the ensuing calculation is to adapt a coordinate
system on B3 to J . Let (ξ 1, ξ 2, ξ 3) be a coordinate system on B3 and let J123 be the
corresponding component of J :

J = J123 dξ 1 ∧ dξ 2 ∧ dξ 3. (59)

Eliminating � in J[i] in favour of J and C using (48)–(50) and (59) yields

J[i](p) =
∣∣∣∣ J123(P[i])

det(DC)(P[i])

∣∣∣∣ Ċ(P[i])

where P[i] = C−1
[i] (p) = (λ, ξ 1, ξ 2, ξ 3) and DC is the Jacobian of Ca(λ, ξ 1, ξ 2, ξ 3). By

definition, J123 is independent of λ (see (47)) so (ξ 1, ξ 2, ξ 3) may be chosen so that |J123| = 1.
Hence

J[i](p) = 1

|det(DC)(P[i])| Ċ(P[i])

= 1

|(det(DC) ◦ C−1
[i] )(p)| (Ċ ◦ C−1

[i] )(p)

and so

J εa
[i] (p) = 1∣∣( det(DCε) ◦ Cε−1

[i]

)
(p)

∣∣ (Cε′ ◦ Cε−1
[i]

)a
(p) (60)

where (52) and (53) have been used, DCε is the Jacobian of Cεa(s, ξ 1, ξ 2, ξ 3) and DCε = 1
ε
DCε.

Let Fεa
b = ηacF ε

bc where Fε = 1
2Fε

ab dxa ∧ dxb and ηacηcb = δa
b where

δa
b =

{
1 if a = b

0 if a �= b.

The inertial coordinate representations of the Lorentz force equation (55) for Cε and the
normalization constraint (54) are

Cεa′′ = ε
(
Fεa

b ◦ Cε
)
Cεb′, ηabCεa′Cεb′ = −ε2 (61)

where Fε is a solution to the Maxwell equations

dFε = 0, d � F ε = −
N(p)∑
i=0

�J̃ ε
[i] (62)

and J ε
[i] is given in (60).

Inserting (57) and (58) into (61) and (62) and equating equal order terms in ε induces a
hierarchy of equations for successive approximations to (Cε, F ε). The first six steps in the
hierarchy are as follows:

• Adopt an external electromagnetic field F−1, i.e. a solution to the source-free Maxwell
equations

dF−1 = 0, d � F−1 = 0.
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• Solve

Ca′′
0[i](Q) = (F−1)b

a(p)Cb′
0[i](Q)

for Ca
0 subject to

ηabCa′
0[i](Q)Cb′

0[i](Q) = 0

where p = C0(Q) and (F−1)b
a is data obtained in the previous step.

• The 2-form F0 is a solution to the Maxwell equations

dF0 = 0, d � F0 = −
N(p)∑
i=0

�J̃[i]0

and

J a
[i]0(p) = ∣∣ det

(
DC−1

[i]0

)
(p)

∣∣Ca′
[i]0(Q) (63)

where DC−1
[i]0(p) is the Jacobian of C−1

[i]0 at p = (xa) and Q = C−1
[i]0(p).

• The first order correction C1 to the map C0 is obtained from the linear equation

Ca′′
1[i] = (F−1)b

aCb′
1[i] + (F−1)b

a
,cCc

1Cb′
0[i] + (F0)b

aCb′
0[i]

subject to

ηabCa′
0[i]Cb′

1[i] = 0

where maps on B4 are implicitly evaluated at Q and maps on M4 are evaluated at
p = C0(Q). Indices following a comma indicate partial differentiation with respect to the
corresponding coordinates so (F−1)b

a
,c = ∂

∂xc (F−1)b
a .

• The 2-form F1 is a solution to the Maxwell equations

dF1 = 0, d � F1 = −
N(p)∑
i=0

�J̃[i]1

and

J a
[i]1 = ∣∣det

(
DC−1

[i]0

)∣∣[−tr
(
DC−1

[i]0DC1
)
C′

0

+
{
tr
(
DC−1

[i]0D2C0
)T

DC−1
[i]0C1

}
C′

0 + C′
1 − DC′

0DC−1
[i]0C1

]a

where maps on M4 are implicitly evaluated at p and maps on B4 are implicitly evaluated
at Q = C−1

[i]0(p). Inside the square brackets DC1 is the matrix of derivatives of Ca
1 and DC′

0
is the matrix of derivatives of C′a

0 and both should be regarded as linear maps from the
(ξ 0 = λ, ξ 1, ξ 2, ξ 3) components of vectors on B4 to the (xa) components of vectors on
M4. Similarly, inside the square brackets DC−1

[i]0 should be regarded as a linear mapping
from the (xa) components of vectors on M4 to the (ξa) components of vectors on B4.
The column vector tr

(
DC−1

[i]0D2C0
)

is
tr
(
DC−1

[i]0D∂λC0
)

tr
(
DC−1

[i]0D∂ξ 1C0
)

tr
(
DC−1

[i]0D∂ξ 2C0
)

tr
(
DC−1

[i]0D∂ξ 3C0
)


where D∂ζC0 is the matrix of partial derivatives of ∂ζC0 where ζ = λ, ξ 1, ξ 2, ξ 3.
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• The second order correction C2 to C is a solution to the equation

Ca′′
2[i](Q) = (F−1)b

aCb′
2[i] + (F−1)b

a
,cCc

1Cb′
1[i]

+ 1
2 (F−1)b

a
,cdCc

1Cd
1 Cb′

0[i] + (F−1)b
a
,cCc

2Cb′
0[i]

+ (F0)b
aCb′

1[i] + (F0)b
a
,cCc

1Cb′
0[i] + (F1)b

aCb′
0[i]

subject to

2ηabCa′
0[i]Cb′

2[i] + ηabCa′
1[i]Cb′

1[i] = −1

where p = C0(Q).

Note that C′
0 and C′

0 + εC′
1 are lightlike and C′

0 + εC′
1 + ε2C′

2 is the leading order timelike
approximation to Cε′.

In single-current regions the reduced proper charge density is
√

−g
(
J ε

[1], J
ε
[1]

)
on

spacetime. Using (57), (60) and the normalization condition (61) on Cε′ it follows that√
−g

(
J ε

[1], J
ε
[1]

)
converges to 0 as ε tends to 0. The reduced proper charge density diverges

on interfaces between single-current and multi-current regions and the above approximation
scheme is valid arbitrarily close to such interfaces.

8. Conclusion

Continuum models of charged particle beams include the interaction of matter with its own
electromagnetic field and avoid peculiar phenomena evident in point-particle descriptions
of self-interacting charge, such as self-acceleration and pre-acceleration. A field-theoretic
realization of a collection of classical electrons is the ‘cold’ charged continuum. It was shown
that the velocity field of the continuum may possess crossing trajectories and in this case the
Eulerian theory is inconsistent. Such behaviour is not uncommon in physics; compression
waves in inviscid fluids also develop crossing trajectories. However, inviscid fluids are an
idealization; all normal fluids are viscous to some extent and ameliorate the problem by
forming a shock. On the other hand, a beam of electrons is very different from a normal fluid
and it was argued that there is no physical reason why the trajectories modelling an electron
beam cannot cross. A Lagrangian theory permitting crossing trajectories was presented and its
‘wall of charge’ solutions were examined and compared with solutions to the original Eulerian
field system. Finally, an approximation scheme was developed to analyse ultra-relativistic
charge configurations of the Lagrangian system.

The Lagrangian theory discussed here features an N-component electric current where
N is dynamically determined and has a point-wise dependence on spacetime. It is possible
that configurations with N = 1 initially may evolve into highly complicated ‘turbulent’
configurations where N is arbitrarily large. Further work in this context may be found in [7].

The theory developed here has immediate application to high-energy accelerator physics
where ultra-relativistic motion is ubiquitous. The general approach is also valid in systems
where electromagnetic interactions dominate over collisional processes, such as in laser-driven
plasma wakefield accelerators where the transition between single and multiple component
electron currents (‘wave breaking’) [8–10] has recently received much attention.
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